Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications.
نویسندگان
چکیده
Electrothermal flow is a promising technique in microfluidic manipulation toward laboratory automation applications, such as clinical diagnostics and high throughput drug screening. Despite the potential of electrothermal flow in biomedical applications, relative little is known about electrothermal manipulation of highly conductive samples, such as physiological fluids and buffer solutions. In this study, the characteristics and challenges of electrothermal manipulation of fluid samples with different conductivities were investigated systematically. Electrothermal flow was shown to create fluid motion for samples with a wide range of conductivity when the driving frequency was above 100 kHz. For samples with low conductivities (below 1 S/m), the characteristics of the electrothermal fluid motions were in quantitative agreement with the theory. For samples with high conductivities (above 1 S/m), the fluid motion appeared to deviate from the model as a result of potential electrochemical reactions and other electrothermal effects. These effects should be taken into consideration for electrothermal manipulation of biological samples with high conductivities. This study will provide insights in designing microfluidic devices for electrokinetic manipulation of biological samples toward laboratory automation applications in the future.
منابع مشابه
Hybrid electrokinetic manipulation in high-conductivity media.
This study reports a hybrid electrokinetic technique for label-free manipulation of pathogenic bacteria in biological samples toward medical diagnostic applications. While most electrokinetic techniques only function in low-conductivity buffers, hybrid electrokinetics enables effective operation in high-conductivity samples, such as physiological fluids (∼1 S m(-1)). The hybrid electrokinetic t...
متن کاملLong-range electrothermal fluid motion in microfluidic systems.
AC electrothermal flow (ACEF) is the fluid motion created as a result of Joule heating induced temperature gradients. ACEF is capable of performing major microfluidic operations, such as pumping, mixing, concentration, separation and assay enhancement, and is effective in biological samples with a wide range of electrical conductivity. Here, we report long-range fluid motion induced by ACEF, wh...
متن کاملEffect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.
Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of ...
متن کاملPhysico-Acoustic Study on Thermal Conductivity of Silver Nanofluid
Low transmission of heat is one of the major problems for heat exchanger fluids in many industrial and scientific applications. This includes cooling of the engines, high power transformers to heat exchangers in solar hot water panels or in refrigeration systems. In order to tackle these problems in thermal industries, nanofluids could play a significant role as excellent heat exchanger materia...
متن کاملAC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
AC electrokinetics has shown great potential for microfluidic functions such as pumping, mixing and concentrating particles. So far, electrokinetics are typically applied on fluids that are not too conductive (<0.02 S/m), which excludes most biofluidic applications. To solve this problem, this paper seeks to apply AC electrothermal (ACET) effect to manipulate conductive fluids and particles wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JALA
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2010